Main Repo This Repo Coverage Status Build Status

Language Model (TensorFlow)

An implementation of LM(language model).

Require Packages

  • cotk

  • TensorFlow == 1.13.1

  • TensorBoardX >= 1.4

Quick Start

  • Downloading dataset and save it to ./data. (Dataset will be released soon.)

  • Execute python run.py to train the model.

    • The default dataset is MSCOCO. You can use --dataset to specify other dataloader class.

    • It use gloves pretrained word vector by default setting. You can use --wvclass to specify wordvector class.

    • If you don’t have GPUs, you can add --cpu for switching to CPU, but it may cost very long time.

  • You can view training process by tensorboard, the log is at ./tensorboard.

    • For example, tensorboard --logdir=./tensorboard. (You have to install tensorboard first.)

  • After training, execute python run.py --mode test --restore best for test.

    • You can use --restore filename to specify checkpoints files, which are in ./model.

    • --restore last means last checkpoint, --restore best means best checkpoints on dev.

  • Find results at ./output.

Arguments

usage: run.py [-h] [--name NAME] [--restore RESTORE] [--mode MODE]
              [--dataset DATASET] [--datapath DATAPATH] [--epoch EPOCH]
              [--wvclass WVCLASS] [--wvpath WVPATH] [--out_dir OUT_DIR]
              [--log_dir LOG_DIR] [--model_dir MODEL_DIR]
              [--cache_dir CACHE_DIR] [--cpu] [--debug] [--cache]

optional arguments:
  -h, --help            show this help message and exit
  --name NAME           The name of your model, used for variable scope and
                        tensorboard, etc. Default: runXXXXXX_XXXXXX
                        (initialized by current time)
  --restore RESTORE     Checkpoints name to load. "last" for last checkpoints,
                        "best" for best checkpoints on dev. Attention: "last"
                        and "best" wiil cause unexpected behaviour when run 2
                        models in the same dir at the same time. Default: None
                        (dont load anything)
  --mode MODE           "train" or "test". Default: train
  --dataset DATASET     Dataloader class. Default: MSCOCO
  --datapath DATAPATH   Directory for data set. Default: ./data
  --epoch EPOCH         Epoch for trainning. Default: 10
  --wvclass WVCLASS     Wordvector class, None for using Glove pretrained
                        wordvec. Default: None
  --wvpath WVPATH       Path for pretrained wordvector. Default: wordvec
  --out_dir OUT_DIR     Output directory for test output. Default: ./output
  --log_dir LOG_DIR     Log directory for tensorboard. Default: ./tensorboard
  --model_dir MODEL_DIR
                        Checkpoints directory for model. Default: ./model
  --cache_dir CACHE_DIR
                        Checkpoints directory for cache. Default: ./cache
  --cpu                 Use cpu.
  --debug               Enter debug mode (using ptvsd).
  --cache               Use cache for speeding up load data and wordvec. (It
                        may cause problems when you switch dataset.)

For hyperparameter settings, please refer to run.py.

TensorBoard Example

Execute tensorboard --logdir=./tensorboard, you will see the plot in tensorboard pages:

Following plot are shown in this model:

  • loss: reconstruction loss.

    loss
  • perplexity: reconstruction perplexity.

    perplexity

And text output:

"epochs": 10,
"lr": 0.1,
"log_dir": "./tensorboard",
"name": "LM",
"max_sen_length": 50,
"checkpoint_max_to_keep": 5,
"embedding_size": 300,
"momentum": 0.9,
"checkpoint_steps": 1000,
"datapath": "resources://MSCOCO~tsinghua",
"cache": false,
"debug": false,
"wvclass": null,
"restore": "last",
"show_sample": [
0
],
"wvpath": null,
"dh_size": 200,
"batch_size": 128,
"lr_decay": 0.995,
"model_dir": "./model",
"out_dir": "./output",
"cache_dir": "./cache",
"softmax_samples": 512,
"mode": "train",
"grad_clip": 5.0,
"dataset": "MSCOCO",
"cuda": true

Following text are shown in this model:

  • args

Case Study of Model Results

Execute python run.py --mode test --restore last

The following output will be in ./output/[name]_test.txt:

self-bleu-3:    0.709417
bw-bleu-3:  0.513164
self-bleu-4:    0.515631
bw-bleu-4:  0.336216
self-bleu-2:    0.870640
fw-bw-bleu-3:   0.550495
perplexity: 13.409582
fw-bleu-4:  0.371952
fw-bleu-2:  0.836639
fw-bw-bleu-4:   0.353182
fw-bleu-3:  0.593684
bw-bleu-2:  0.723493
fw-bw-bleu-2:   0.775963
A man and motorcycle parked on front of a building .
A old desk with a computers computers of computers .
A people in to a table in to a tree sign
A man dog with a in in a bathroom bathroom .
A man young plate to be served by a people .
A man is on a bench next front park of a woods .
A man is a piece feeder 's a in
A man of a old man in a small .
A man is on a bench next looking dog is on her fence . the park station .
A old man is standing a orange tie .
A man is in a dog in to a .
A old desk a and and a and desk .
A of and and a black and a .
A man is a man sitting to a table sign
A up of a plate plate with with a stove pot . the .
A man plate top oven in of kitchen .
A man is on a small cars in a street field .
A man of people are down a street lined street .
A man is in two legs and in a couch . a .
A man is two legs of a person on out a television .
A in a helmet a on front of a building of people .
A man is standing on a dog on a laptop .

Performance

Perplexity

MSCOCO

13.41