Quick Start

Let’s skim through the whole package to find what you want.

Dataloader

Load common used dataset and do preprocessing:

  • Download online resources or import from local path

  • Split training set, development set and test set

  • Construct vocabulary list

>>> import cotk.dataloader
>>> # automatically download online resources
>>> dataloader = cotk.dataloader.MSCOCO("resources://MSCOCO_small")
>>> # or download from a url
>>> dl_url = cotk.dataloader.MSCOCO("http://cotk-data.s3-ap-northeast-1.amazonaws.com/mscoco_small.zip#MSCOCO")
>>> # or import from local file
>>> dl_zip = cotk.dataloader.MSCOCO("./MSCOCO.zip#MSCOCO")

>>> print("Dataset is split into:", dataloader.fields.keys())
dict_keys(['train', 'dev', 'test'])

Inspect vocabulary list

>>> print("Vocabulary size:", dataloader.frequent_vocab_size)
Vocabulary size: 2597
>>> print("First 10 tokens in vocabulary:", dataloader.frequent_vocab_list[:10])
First 10 tokens in vocabulary: ['<pad>', '<unk>', '<go>', '<eos>', '.', 'a', 'A', 'on', 'of', 'in']

Convert between ids and strings

>>> print("Convert string to ids", \
...           dataloader.convert_tokens_to_ids(["<go>", "hello", "world", "<eos>"]))
Convert string to ids [2, 6107, 1875, 3]
>>> print("Convert ids to string", \
...           dataloader.convert_ids_to_tokens([2, 1379, 1897, 3]))
Convert ids to string ['hello', 'world']

Iterate over batches

>>> for data in dataloader.get_batches("train", batch_size=1):
...     print(data)
{'sent':
    array([[ 2, 181, 13, 26, 145, 177, 8, 22, 12, 5, 1, 1099, 4, 3]]),
    # <go> This is an old photo of people and a <unk> wagon.
 'sent_allvocabs':
    array([[ 2, 181, 13, 26, 145, 177, 8, 22, 12, 5, 3755, 1099, 4, 3]]),
    # <go> This is an old photo of people and a horse-drawn wagon.
 'sent_length': array([14])}
......

Or using while (another iteration method) if you like

>>> dataloader.restart("train", batch_size=1):
>>> while True:
...    data = dataloader.get_next_batch("train")
...    if data is None: break
...    print(data)

Note

If you want to know more about Dataloader, please refer to docs of dataloader.

Metrics

We found there are different versions of the same metric in different papers, which leads to unfair comparison between models. For example, whether considering unk, calculating the mean of NLL across sentences or tokens in perplexity may introduce huge differences.

We provide a unified implementation for metrics, where hashvalue is provided for checking whether the same data is used. The metric object receives mini-batches.

>>> import cotk.metric
>>> metric = cotk.metric.SelfBleuCorpusMetric(dataloader, gen_key="gen")
>>> metric.forward({
...    "gen":
...        [[2, 181, 13, 26, 145, 177, 8, 22, 12, 5, 3755, 1099, 4, 3],
...         [2, 46, 145, 500, 1764, 207, 11, 5, 93, 7, 31, 4, 3]]
... })
>>> print(metric.close())
{'self-bleu': 0.02253475750490193, 'self-bleu hashvalue': 'f7d75c0d0dbf53ffba4b845d1f61487fd2d6d3c0594b075c43111816c84c65fc'}

You can merge multiple metrics together by cotk.metric.MetricChain.

>>> metric = cotk.metric.MetricChain()
>>> metric.add_metric(cotk.metric.SelfBleuCorpusMetric(dataloader, gen_key="gen"))
>>> metric.add_metric(cotk.metric.FwBwBleuCorpusMetric(dataloader, reference_test_list=dataloader.get_all_batch('test')['sent_allvocabs'], gen_key="gen"))
>>> metric.forward({
...    "gen":
...        [[2, 181, 13, 26, 145, 177, 8, 22, 12, 5, 3755, 1099, 4, 3],
...         [2, 46, 145, 500, 1764, 207, 11, 5, 93, 7, 31, 4, 3]]
... })
>>> print(metric.close())
100%|██████████| 1000/1000 [00:00<00:00, 5281.95it/s]
{'self-bleu': 0.02253475750490193, 'self-bleu hashvalue': 'f7d75c0d0dbf53ffba4b845d1f61487fd2d6d3c0594b075c43111816c84c65fc', 'fw-bleu': 0.28135593382545376, 'bw-bleu': 0.027021522872801896, 'fw-bw-bleu': 0.04930753293488745, 'fw-bw-bleu hashvalue': '60a39f381e065e8df6fb5eb272984128c9aea7dee4ba50a43bfb768395a70762'}

We also provide recommended metrics for selected dataloader.

>>> metric = dataloader.get_inference_metric(gen_key="gen")
>>> metric.forward({
...    "gen":
...        [[2, 181, 13, 26, 145, 177, 8, 22, 12, 5, 3755, 1099, 4, 3],
...         [2, 46, 145, 500, 1764, 207, 11, 5, 93, 7, 31, 4, 3]]
... })
>>> print(metric.close())
100%|██████████| 1000/1000 [00:00<00:00, 4857.36it/s]
100%|██████████| 1250/1250 [00:00<00:00, 4689.29it/s]
{'self-bleu': 0.02253475750490193, 'self-bleu hashvalue': 'f7d75c0d0dbf53ffba4b845d1f61487fd2d6d3c0594b075c43111816c84c65fc', 'fw-bleu': 0.3353037449663603, 'bw-bleu': 0.027327995838287513, 'fw-bw-bleu': 0.050537105917262654, 'fw-bw-bleu hashvalue': 'c254aa4008ae11b1bc4955e7cd1f7f3aad34b664178a585a218b1474970e3f23', 'gen': [['inside', 'is', 'an', 'elephant', 'shirt', 'of', 'people', 'and', 'a', 'grasslands', 'pulls', '.'], ['An', 'elephant', 'girls', 'baggage', 'sidewalk', 'with', 'a', 'clock', 'on', 'it', '.']]}

Note

If you want to know more about metrics, please refer to docs of metrics.

Predefined Models

We have provided some baselines for the classical tasks, see Model Zoo in docs for details.

You can also use cotk download thu-coai/MODEL_NAME/master to get the codes.