tatk.policy.rule.crosswoz package¶
Submodules¶
tatk.policy.rule.crosswoz.evaluate module¶
-
tatk.policy.rule.crosswoz.evaluate.begin_active_tuple_num(data)¶
-
tatk.policy.rule.crosswoz.evaluate.begin_da_type(data)¶
-
tatk.policy.rule.crosswoz.evaluate.calculateF1(predict_golden)¶
-
tatk.policy.rule.crosswoz.evaluate.calculateJointState(predict_golden)¶
-
tatk.policy.rule.crosswoz.evaluate.calculateSlotState(predict_golden)¶
-
tatk.policy.rule.crosswoz.evaluate.end_usr_da_type(data)¶
-
tatk.policy.rule.crosswoz.evaluate.eval_begin_da_predict(data)¶
-
tatk.policy.rule.crosswoz.evaluate.eval_simulator_performance(data, goal_type=None)¶
-
tatk.policy.rule.crosswoz.evaluate.eval_state_predict(data)¶
-
tatk.policy.rule.crosswoz.evaluate.read_zipped_json(filepath, filename)¶
tatk.policy.rule.crosswoz.rule_simulator module¶
-
class
tatk.policy.rule.crosswoz.rule_simulator.Simulator¶ Bases:
tatk.policy.policy.Policy-
__init__()¶ Initialize self. See help(type(self)) for accurate signature.
-
begin_da()¶
-
get_goal()¶
-
get_reward()¶
-
infer_goal_type(goal)¶
-
init_session(goal=None, state=None, turn_num=0, da_seq=[])¶ Init the class variables for a new session.
-
is_terminated()¶
-
predict(sys_act)¶ Predict the next agent action given dialog state. update state[‘system_action’] with predict system action
- Args:
- state (tuple or dict):
when the DST and Policy module are separated, the type of state is tuple. else when they are aggregated together, the type of state is dict (dialog act).
- Returns:
- action (list of list):
The next dialog action.
-
state_predict()¶
-
state_update(prev_user_da, prev_sys_da)¶
-