tatk.policy.rule.crosswoz package¶
Submodules¶
tatk.policy.rule.crosswoz.evaluate module¶
- 
tatk.policy.rule.crosswoz.evaluate.begin_active_tuple_num(data)¶ 
- 
tatk.policy.rule.crosswoz.evaluate.begin_da_type(data)¶ 
- 
tatk.policy.rule.crosswoz.evaluate.calculateF1(predict_golden)¶ 
- 
tatk.policy.rule.crosswoz.evaluate.calculateJointState(predict_golden)¶ 
- 
tatk.policy.rule.crosswoz.evaluate.calculateSlotState(predict_golden)¶ 
- 
tatk.policy.rule.crosswoz.evaluate.end_usr_da_type(data)¶ 
- 
tatk.policy.rule.crosswoz.evaluate.eval_begin_da_predict(data)¶ 
- 
tatk.policy.rule.crosswoz.evaluate.eval_simulator_performance(data, goal_type=None)¶ 
- 
tatk.policy.rule.crosswoz.evaluate.eval_state_predict(data)¶ 
- 
tatk.policy.rule.crosswoz.evaluate.read_zipped_json(filepath, filename)¶ 
tatk.policy.rule.crosswoz.rule_simulator module¶
- 
class 
tatk.policy.rule.crosswoz.rule_simulator.Simulator¶ Bases:
tatk.policy.policy.Policy- 
__init__()¶ Initialize self. See help(type(self)) for accurate signature.
- 
begin_da()¶ 
- 
get_goal()¶ 
- 
get_reward()¶ 
- 
infer_goal_type(goal)¶ 
- 
init_session(goal=None, state=None, turn_num=0, da_seq=[])¶ Init the class variables for a new session.
- 
is_terminated()¶ 
- 
predict(sys_act)¶ Predict the next agent action given dialog state. update state[‘system_action’] with predict system action
- Args:
 - state (tuple or dict):
 when the DST and Policy module are separated, the type of state is tuple. else when they are aggregated together, the type of state is dict (dialog act).
- Returns:
 - action (list of list):
 The next dialog action.
- 
state_predict()¶ 
- 
state_update(prev_user_da, prev_sys_da)¶ 
-