tatk.policy.mle.crosswoz package¶
Submodules¶
tatk.policy.mle.crosswoz.evaluate module¶
- 
tatk.policy.mle.crosswoz.evaluate.calculateF1(predict_golden)¶ 
- 
tatk.policy.mle.crosswoz.evaluate.da_evaluate_simulation(policy)¶ 
- 
tatk.policy.mle.crosswoz.evaluate.end2end_evaluate_simulation(policy)¶ 
- 
tatk.policy.mle.crosswoz.evaluate.evaluate_corpus_f1(policy, data, goal_type=None)¶ 
- 
tatk.policy.mle.crosswoz.evaluate.read_zipped_json(filepath, filename)¶ 
tatk.policy.mle.crosswoz.loader module¶
tatk.policy.mle.crosswoz.mle module¶
- 
class 
tatk.policy.mle.crosswoz.mle.MLE(archive_file='/home/travis/build/thu-coai/tatk/tatk/policy/mle/crosswoz/models/mle_policy_crosswoz.zip', model_file='https://tatk-data.s3-ap-northeast-1.amazonaws.com/mle_policy_multiwoz.zip')¶ Bases:
tatk.policy.mle.mle.MLEAbstract- 
__init__(archive_file='/home/travis/build/thu-coai/tatk/tatk/policy/mle/crosswoz/models/mle_policy_crosswoz.zip', model_file='https://tatk-data.s3-ap-northeast-1.amazonaws.com/mle_policy_multiwoz.zip')¶ Initialize self. See help(type(self)) for accurate signature.
- 
 
tatk.policy.mle.crosswoz.train module¶
- 
class 
tatk.policy.mle.crosswoz.train.MLE_Trainer(manager, cfg)¶ Bases:
object- 
__init__(manager, cfg)¶ Initialize self. See help(type(self)) for accurate signature.
- 
imit_test(epoch, best)¶ provide an unbiased evaluation of the policy fit on the training dataset
- 
imitating(epoch)¶ pretrain the policy by simple imitation learning (behavioral cloning)
- 
load(filename='save/best')¶ 
- 
policy_loop(data)¶ 
- 
save(directory, epoch)¶ 
- 
test()¶ 
-