tatk.policy.mle.crosswoz package¶
Submodules¶
tatk.policy.mle.crosswoz.evaluate module¶
-
tatk.policy.mle.crosswoz.evaluate.calculateF1(predict_golden)¶
-
tatk.policy.mle.crosswoz.evaluate.da_evaluate_simulation(policy)¶
-
tatk.policy.mle.crosswoz.evaluate.end2end_evaluate_simulation(policy)¶
-
tatk.policy.mle.crosswoz.evaluate.evaluate_corpus_f1(policy, data, goal_type=None)¶
-
tatk.policy.mle.crosswoz.evaluate.read_zipped_json(filepath, filename)¶
tatk.policy.mle.crosswoz.loader module¶
tatk.policy.mle.crosswoz.mle module¶
-
class
tatk.policy.mle.crosswoz.mle.MLE(archive_file='/home/travis/build/thu-coai/tatk/tatk/policy/mle/crosswoz/models/mle_policy_crosswoz.zip', model_file='https://tatk-data.s3-ap-northeast-1.amazonaws.com/mle_policy_multiwoz.zip')¶ Bases:
tatk.policy.mle.mle.MLEAbstract-
__init__(archive_file='/home/travis/build/thu-coai/tatk/tatk/policy/mle/crosswoz/models/mle_policy_crosswoz.zip', model_file='https://tatk-data.s3-ap-northeast-1.amazonaws.com/mle_policy_multiwoz.zip')¶ Initialize self. See help(type(self)) for accurate signature.
-
tatk.policy.mle.crosswoz.train module¶
-
class
tatk.policy.mle.crosswoz.train.MLE_Trainer(manager, cfg)¶ Bases:
object-
__init__(manager, cfg)¶ Initialize self. See help(type(self)) for accurate signature.
-
imit_test(epoch, best)¶ provide an unbiased evaluation of the policy fit on the training dataset
-
imitating(epoch)¶ pretrain the policy by simple imitation learning (behavioral cloning)
-
load(filename='save/best')¶
-
policy_loop(data)¶
-
save(directory, epoch)¶
-
test()¶
-