convlab2.policy.mle.crosswoz package¶
Submodules¶
convlab2.policy.mle.crosswoz.evaluate module¶
-
convlab2.policy.mle.crosswoz.evaluate.calculateF1(predict_golden)¶
-
convlab2.policy.mle.crosswoz.evaluate.da_evaluate_simulation(policy)¶
-
convlab2.policy.mle.crosswoz.evaluate.end2end_evaluate_simulation(policy)¶
-
convlab2.policy.mle.crosswoz.evaluate.evaluate_corpus_f1(policy, data, goal_type=None)¶
-
convlab2.policy.mle.crosswoz.evaluate.read_zipped_json(filepath, filename)¶
convlab2.policy.mle.crosswoz.loader module¶
-
class
convlab2.policy.mle.crosswoz.loader.Dataset(s_s, a_s)¶ Bases:
torch.utils.data.dataset.Dataset
convlab2.policy.mle.crosswoz.mle module¶
-
class
convlab2.policy.mle.crosswoz.mle.MLE(archive_file='/home/travis/build/thu-coai/ConvLab-2/convlab2/policy/mle/crosswoz/models/mle_policy_crosswoz.zip', model_file='https://convlab.blob.core.windows.net/convlab-2/mle_policy_crosswoz.zip')¶
convlab2.policy.mle.crosswoz.train module¶
-
class
convlab2.policy.mle.crosswoz.train.MLE_Trainer(manager, cfg)¶ Bases:
object-
imit_test(epoch, best)¶ provide an unbiased evaluation of the policy fit on the training dataset
-
imitating(epoch)¶ pretrain the policy by simple imitation learning (behavioral cloning)
-
load(filename='save/best')¶
-
policy_loop(data)¶
-
save(directory, epoch)¶
-
test()¶
-