convlab2.nlu.svm package¶
Submodules¶
convlab2.nlu.svm.Classifier module¶
-
class
convlab2.nlu.svm.Classifier.SGD(config)¶ Bases:
object-
load(params)¶
-
params()¶
-
predict(X)¶
-
train(X, y)¶
-
-
class
convlab2.nlu.svm.Classifier.SVM(config)¶ Bases:
object-
load(params)¶
-
params()¶
-
pickC(X, y)¶
-
predict(X)¶
-
train(X, y)¶
-
-
class
convlab2.nlu.svm.Classifier.classifier(config)¶ Bases:
object-
cacheFeature(dw, config=None)¶
-
createDictionary()¶
-
decode()¶
-
decodeToFile(dw, output_fname, config=None)¶
-
decode_sent(sentinfo, output_fname, config=None)¶
-
export(models_fname, dictionary_fname, config_fname)¶
-
extractFeatures(dw, log_input_key='batch')¶
-
extractFeatures2(sentinfo, log_input_key='batch')¶
-
load(fname)¶
-
save(save_fname)¶
-
train(dw, config=None)¶
-
-
convlab2.nlu.svm.Classifier.toSparse(baseX, X, dictionary)¶
-
convlab2.nlu.svm.Classifier.trainSVMwrapper(X, y)¶
convlab2.nlu.svm.Features module¶
-
class
convlab2.nlu.svm.Features.cnNgram(words, logp, delta=0)¶ Bases:
object-
logscore()¶
-
score()¶
-
string_repn()¶
-
word_list()¶
-
-
convlab2.nlu.svm.Features.cn_ngram_merge(ngrams)¶
-
convlab2.nlu.svm.Features.cn_ngram_prune(ngrams, n)¶
-
convlab2.nlu.svm.Features.cn_ngram_replaced(ngram, searchwords, replacement)¶
-
class
convlab2.nlu.svm.Features.cnet(config)¶ Bases:
object-
calculate(log_turn, log_input_key='batch')¶
-
tuple_calculate(this_tuple, log_turn, log_input_key='batch')¶
-
-
convlab2.nlu.svm.Features.get_cnngrams(cnet, max_ngrams, max_length)¶
-
convlab2.nlu.svm.Features.get_ngrams(sentence, max_length, skip_ngrams=False, add_tags=True)¶
-
class
convlab2.nlu.svm.Features.lastSys(config)¶ Bases:
object-
calculate(log_turn, log_input_key='batch')¶
-
tuple_calculate(this_tuple, log_turn, log_input_key='batch')¶
-
-
class
convlab2.nlu.svm.Features.nbest(config)¶ Bases:
object-
calculate(log_turn, log_input_key='batch')¶
-
calculate_sent(log_turn, log_input_key='batch')¶
-
tuple_calculate(this_tuple, log_turn, log_input_key='batch')¶
-
-
class
convlab2.nlu.svm.Features.nbestLengths(config)¶ Bases:
object-
calculate(log_turn, log_input_key='batch')¶
-
tuple_calculate(this_tuple, log_turn, log_input_key='batch')¶
-
convlab2.nlu.svm.Tuples module¶
-
convlab2.nlu.svm.Tuples.actual_value(value)¶
-
convlab2.nlu.svm.Tuples.generic_to_specific(tup)¶
-
convlab2.nlu.svm.Tuples.is_generic(value)¶
-
convlab2.nlu.svm.Tuples.makes_valid_act(tuples)¶
-
convlab2.nlu.svm.Tuples.tuple_to_act(t)¶
convlab2.nlu.svm.dataset_walker module¶
convlab2.nlu.svm.sutils module¶
-
convlab2.nlu.svm.sutils.import_class(cl)¶
-
convlab2.nlu.svm.sutils.powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)¶
-
convlab2.nlu.svm.sutils.svm_to_libsvm(model, labels=None)¶
convlab2.nlu.svm.train module¶
-
convlab2.nlu.svm.train.train(config)¶
-
convlab2.nlu.svm.train.usage()¶