convlab2.nlu.jointBERT package

Submodules

convlab2.nlu.jointBERT.dataloader module

class convlab2.nlu.jointBERT.dataloader.Dataloader(intent_vocab, tag_vocab, pretrained_weights)

Bases: object

bert_tokenize(word_seq, tag_seq)
get_train_batch(batch_size)
load_data(data, data_key, cut_sen_len, use_bert_tokenizer=True)

sample representation: [list of words, list of tags, list of intents, original dialog act] :param data_key: train/val/test :param data: :return:

pad_batch(batch_data)
seq_id2intent(ids)
seq_id2tag(ids)
seq_intent2id(intents)
seq_tag2id(tags)
yield_batches(batch_size, data_key)

convlab2.nlu.jointBERT.jointBERT module

class convlab2.nlu.jointBERT.jointBERT.JointBERT(model_config, device, slot_dim, intent_dim, intent_weight=None)

Bases: torch.nn.modules.module.Module

forward(word_seq_tensor, word_mask_tensor, tag_seq_tensor=None, tag_mask_tensor=None, intent_tensor=None, context_seq_tensor=None, context_mask_tensor=None)

Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

convlab2.nlu.jointBERT.test module

convlab2.nlu.jointBERT.test.set_seed(seed)

convlab2.nlu.jointBERT.train module

convlab2.nlu.jointBERT.train.set_seed(seed)

Module contents